1,852 research outputs found

    Quantum Versus Classical Decay Laws in Open Chaotic Systems

    Full text link
    We study analytically the time evolution in decaying chaotic systems and discuss in detail the hierarchy of characteristic time scales that appeared in the quasiclassical region. There exist two quantum time scales: the Heisenberg time t_H and the time t_q=t_H/\sqrt{\kappa T} (with \kappa >> 1 and T being the degree of resonance overlapping and the transmission coefficient respectively) associated with the decay. If t_q < t_H the quantum deviation from the classical decay law starts at the time t_q and are due to the openness of the system. Under the opposite condition quantum effects in intrinsic evolution begin to influence the decay at the time t_H. In this case we establish the connection between quantities which describe the time evolution in an open system and their closed counterparts.Comment: 3 pages, REVTeX, no figures, replaced with the published version (misprints corrected, references updated

    Optimized puncturing distributions for irregular non-binary LDPC codes

    Full text link
    In this paper we design non-uniform bit-wise puncturing distributions for irregular non-binary LDPC (NB-LDPC) codes. The puncturing distributions are optimized by minimizing the decoding threshold of the punctured LDPC code, the threshold being computed with a Monte-Carlo implementation of Density Evolution. First, we show that Density Evolution computed with Monte-Carlo simulations provides accurate (very close) and precise (small variance) estimates of NB-LDPC code ensemble thresholds. Based on the proposed method, we analyze several puncturing distributions for regular and semi-regular codes, obtained either by clustering punctured bits, or spreading them over the symbol-nodes of the Tanner graph. Finally, optimized puncturing distributions for non-binary LDPC codes with small maximum degree are presented, which exhibit a gap between 0.2 and 0.5 dB to the channel capacity, for punctured rates varying from 0.5 to 0.9.Comment: 6 pages, ISITA1

    Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel

    Get PDF
    In this paper, we show that Quasi-Cyclic LDPC codes can efficiently accommodate the hybrid iterative/ML decoding over the binary erasure channel. We demonstrate that the quasi-cyclic structure of the parity-check matrix can be advantageously used in order to significantly reduce the complexity of the ML decoding. This is achieved by a simple row/column permutation that transforms a QC matrix into a pseudo-band form. Based on this approach, we propose a class of QC-LDPC codes with almost ideal error correction performance under the ML decoding, while the required number of row/symbol operations scales as kkk\sqrt{k}, where kk is the number of source symbols.Comment: 6 pages, ISITA1
    corecore